7 Free Google Cloud Training Resources

7 Free Google Cloud Training Resources

If you’re looking to break into the cloud computing space, or just continue growing your skills and knowledge, there are an abundance of resources out there to help you get started, including free Google Cloud training. If you know where to look, open-source learning is a great way to get familiar with different cloud service providers. 

With the combined knowledge from our previous blog posts on free training resources for AWS and Azure, you’ll be well on your way to expanding your cloud expertise and finding your own niche. No matter where you are in the learning process, there are training resources for every experience level and learning type – get started learning now with these 7 free Google Cloud Platform training resources: 

1. Google Cloud Free Program

For free, hands-on training there’s no better place to start than with Google Cloud Platform itself. Within the Google Cloud free program you’ll have two options – sign up for a free trial or free tier. As a new Google Cloud customer, you can get started with a 90-day free trial. If you’re already a Google Cloud customer and are looking for a free option, you can sign up for Google Cloud’s free tier. GCP’s free program option is a no-brainer thanks to its offerings. 

  • Access to all GCP products. You’ll have everything you need to experiment with building and running apps, sites, and services. Firebase and the Google Maps API are included with your free trial.
  • $300 credit is yours to spend for the next 90-days, an expansion from their previous 60-day period and a sizable offer in comparison to Azure’s $200 for 30 days, so take advantage.
  • No autocharges after the trial period ends – a rarity for most free trials, and a guarantee that this training resource is 100% free. 
  • An always-free option. GCP’s free tier takes the cake with this an always-free tier that gives you enough power to run a small app despite limitations on product and usage. Free tier customers can use select Google Cloud products free of charge, with specified monthly usage limits, making this a perfect option for learning purposes.

For help with navigating the platform as you use it, check out GCP’s documentation for a full overview, comparisons, tutorials, and more.

2. Coursera

On the Google Cloud training page, you’ll find plenty of classes tailored to your interests or role so you can get technical skills and learn best practices for using the platform. As another free Google Cloud training option, Google has also teamed up with Coursera, an online learning platform founded by Stanford professors, to offer courses online so you can “skill up from anywhere.”

Coursera includes a number of free courses including topics in Machine Learning, Architecting, Data Engineering, Developing Applications, and the list goes on.  

3. Qwiklabs

In conjunction with Coursera, Google Cloud offers hands-on training with specialized labs available via Qwiklabs, a learning lab environment for developers. Choose a “quest” from their catalog and get started with 50+ hands-on labs from beginner to expert level. Here you’ll learn new skills in a GCP environment and earn cloud badges along the way. Get started with GCP Essentials and work your way into more advanced, niche topics like Managing Cloud Infrastructure with Terraform, Machine Learning APIs, IoT in Google Cloud, and so on.

4. Plural Sight

Pluralsight is a technology skills platform that offers a full breadth of Google Cloud courses, learning paths, and skills assessments. You’ll find several Google Cloud resources to help level up your skills. If you’re looking to dive deeper into Google Cloud, this is a great option – get started learning with a free trial and make sure to keep an eye out for training discounts offered by Google.

5. GitHub

GitHub provides users a number of materials that can help further your Google Cloud training. The great thing about this platform is collaboration among the users, this community brings together people from all different backgrounds so they are able to provide knowledge about their own specialties and experiences. Here’s a great list of Google Cloud training resources that can help you.

6. YouTube

You can never go wrong with YouTube. With an endless amount of free videos, YouTube offers an abundance of Google Cloud training options for those of you who prefer to watch the movie instead of reading the book (you know who you are). Some of the most popular YouTube channels for free Google Cloud Platform training include:

  • Google Cloud Platform (640k subscribers) – “helping you build what’s next with secure infrastructure, developer tools, APIs, data analytics and machine learning.”
  • Simplilearn (764k subscribers) – one of the world’s leading certification training providers, with online training that includes Machine Learning, Google Cloud Platform, AWS, DevOps, and Big Data, among others. The course on Introduction To Google Cloud Platform Fundamentals Certification is a popular one with upwards of 155k views. Another popular video is the Google Cloud Platform Certification Path which walks you through all of the available Google Cloud certifications.
  • Edureka (2.29M subscribers) is a full-service, online learning platform with curated content in Big Data and Hadoop, DevOps, Blockchain, AI, Data Science, AWS, Google Cloud, and more. Their YouTube channel is a “gateway to high-quality videos, webinars, sample classes and lectures from industry practitioners and influencers.” If you’re jumping into GCP with no prior knowledge or experience, the What is Google Cloud Platform tutorial will help get you started.

7. Blogs & Forums

Blogs are a great way to keep your mind flowing with new insights, ideas, and the latest on all things cloud computing. Google Cloud and Qwiklabs have blogs of their own, perfect for supplemented reading with their trainings. For a more well-rounded blog with content on other service providers, check out Cloud Academy

We also cover Google Cloud on the ParkMyCloud blog – check out this guide to Google Cloud machine types, an explanation of sustained use discounts, and an introduction to resource-based pricing. And be sure to subscribe to relevant discussion forums such as r/googlecloud on Reddit and the GCP Slack.

Take Advantage of These Free Google Cloud Training Resources

It is clear that cloud computing is here to stay and as cloud technology continues to grow and advance, free training resources only continue to emerge so it’s important to stay up to date on new resources. We picked the 7 above for their reliability, variety, quality, and range of information. With the current working remote culture, this is the perfect time to take advantage of free google cloud training online. Whether you’re new to Google Cloud or consider yourself an expert, these resources will expand your knowledge and keep you up to date with what’s latest in the platform.

More Free Training Resources:

AWS vs Azure vs Google Cloud Market Share 2020: What the Latest Data Shows

AWS vs Azure vs Google Cloud Market Share 2020: What the Latest Data Shows

Q3 2020 earnings are in for the ‘big three’ cloud providers and you know what that means – it’s time for an AWS vs Azure vs Google Cloud market share comparison. Let’s take a look at all three providers side-by-side to see where they stand.

Note: several previous versions of this article have been published. It has been updated for November 2020.

AWS vs. Azure vs. Google Cloud Earnings

To get a sense of the AWS vs Azure vs Google Cloud market share breakdown, let’s take a look at what each cloud provider’s reports shared.

AWS 

Amazon reported Amazon Web Services (AWS) revenue of $11.6 billion for Q3 2020, compared to $8.9 billion for Q3 2019. AWS revenue grew 29% in the quarter. 

Across the business, Amazon’s quarterly sales increased to $96.1 billion, up 37% and beating predictions of $92.7 billion. The net income of $6.3 billion was the highest in a single quarter yet for the giant, driven by online shopping during COVID-19 – though note that the company is careful to note the $2 billion in costs related to COVID-19 this quarter, as well as $4 billion last quarter and $4 billion for Q4. And AWS? It made up 12.1% of Amazon’s revenue for the quarter – and 57% of its operating income.

AWS only continues to grow, and bolster the retail giant time after time.

One thing to keep in mind: you’ll see a couple of headlines pointing out that revenue growth is down and/or highlighting the fact that it’s flattening out, quoting that 29% number and comparing it to previous quarters’ growth rates, which peaked at 81% in 2015. However, that metric is of questionable value as AWS continues to increase revenue at this enormous scale, dominating the market (as we’ll see below).

AWS announced customer wins for the quarter including payments technology company Global Payments, biotechnology company Moderna, restaurant chain Jack in the Box, visual effects company Weta Digital, household appliance manufacturer Arçelik, and more.

Azure

While Amazon specifies AWS revenue, Microsoft only reports on Azure’s growth rate. That number is 48% revenue growth over the previous quarter. This time last year, growth was reported at 51%. As mentioned above, comparing growth rates to growth rates is interesting, but not necessarily as useful a metric as actual revenue numbers – which we don’t have for Azure alone.

Here are the revenue numbers Microsoft does report. Azure is under the “Intelligent Cloud” business, which grew 20% to $13 billion. The operating group also includes server products and cloud services (22% growth). 

The lack of specificity around Azure frustrates many pundits as it simply can’t be compared directly to AWS, and inevitably raises eyebrows about how Azure is really doing. Of course, it also assumes that IaaS is the only piece of “cloud” that’s important, but then, that’s how AWS has grown to dominate the market. EVP and CFO Amy Hood highlighted demand for cloud offerings as a key driver to Microsoft’s current and future revenue. Office Commercial and consumer products are both growing – unsurprising in the work-from-home era.  Additionally, Microsoft Teams has reached 115 million daily active users, up from 75 million in April. 

However, overall, Microsoft exceeded analyst expectations in the second full quarter of the COVID-19 pandemic, with overall revenue coming in at $37.2 billion vs. $35.7 billion expected.

Google Cloud

This quarter, Google Cloud, which includes Google Compute Engine and G Suite, generated $3.44 billion in revenue – a growth of 45% year-over-year. 

Overall, Alphabet’s revenue increased 14% year-over-year to $14.17 billion. Ruth Porat, Alphabet’s CFO, reported that Google Cloud Platform’s growth rate was meaningfully above cloud overall. Headcount growth is planned to focus on Google Cloud in the next quarter.

Next quarter, Alphabet will break out Google Cloud as a separate reporting segment to show the scale of investments. They will also disclose full-year Google Cloud results back through 2018.

Cloud Computing Market Share Breakdown – AWS vs. Azure vs. Google Cloud

When we originally published this blog in 2018, we included a market share breakdown from analyst Canalys, which reported AWS in the lead owning about a third of the market, Microsoft in second with about 15 percent, and Google sitting around 5 percent.

In 2019, they reported an overall growth in the cloud infrastructure market of 42%. By provider, AWS had the biggest sales gain with a $2.3 billion YOY increase, but Canalys reported Azure and Google Cloud with bigger percentage increases.

As of October 2020, Canalys reports that the worldwide cloud market grew 33% this quarter to $36.5 billion. AWS has 32% of the market and generated more revenue than the next three largest combined, Azure is at 19% of the market, Google Cloud at 7%, Alibaba Cloud close behind at 6%, and other clouds with 37%. 

It seems clear that in the case of AWS vs Azure vs Google Cloud market share – AWS still has a substantial lead, and their market share remains steady. 

Bezos has said, “AWS had the unusual advantage of a seven-year head start before facing like-minded competition. As a result, the AWS services are by far the most evolved and most functionality-rich.”

Our anecdotal experience talking to cloud customers often finds that true, and it says something that Microsoft isn’t breaking down their cloud numbers just yet, while Google admits they’re behind but leans in.

AWS remains far in the lead for now. With that said, it will be interesting to see how the actual market share numbers play out over the coming years.

AWS vs. Azure vs. Google Cloud Governance Models

AWS vs. Azure vs. Google Cloud Governance Models

The deliverability of cloud governance models has improved as public cloud usage continues to grow and mature. These models allow large enterprises to tier and scale their AWS Accounts, Azure Subscriptions and Google Projects across hundreds and thousands of cloud users and services. When we first started talking to customers 5+ years ago, mostly AWS users at the time, they often had a single AWS account for their entire organization and required third-party tools to manage usage and costs by project, line of business or application owner. But now, the “Big 3” cloud providers offer an array of ways for even the largest Fortune 500 enterprises to set up, run and manage their use of the dizzying volume of cloud services.

Why Cloud Governance Models are Important

The main way cloud providers allow cloud administrators to manage and grant access to their services is by leveraging Identity and Access Management (IAM) and providing options for roles and policies that govern both access and usage. IAM lets you grant granular access to specific AWS, Azure and/or Google Cloud resources and helps prevent access to other resources. IAM lets you adopt the security principle of least privilege, where you grant only necessary permissions to access specific resources like VM’s, Databases, Storage, Containers, etc.. With IAM, you manage access control by defining who (identity) has what access (role) for which resource. 

In ParkMyCloud, we apply this with Teams and Roles. Admins can create Teams (equivalent to Projects, Applications, or Lines of Business) and can invite a Team Lead to manage that PMC Team, and they can in turn grant users access and set permissions for them, which can then by automated based on policies, usually by leveraging tags but you can use other metadata as well. 

What if you want more flexibility with the cloud providers to both manage user access and to more tightly align your cloud services and usage to your organizational structure, projects and applications? Each of the major providers has designed ways for large enterprises to implement a hierarchical usage of cloud users and services that probably can look very similar to that enterprises organization chart. (If you can understand their jargon.)

How AWS, Azure, and Google Apply Cloud Governance Models

We dug into AWS, Azure and Google and this is what we found:

  • Amazon Web Services (AWS)
    • Tier 1: AWS Organization
      • Tier 2: Organization Unit
        • Tier 3: AWS Accounts
          • Tier 4: Tags

  • Microsoft Azure
    • Tier 1: Azure Enterprise Portal
      • Tier 2: Departments
        • Tier 3: Accounts
          • Tier 4: Subscriptions
            • Tier 5: Resource Groups
              • Tier 6: Tags

  • Google Cloud
    • Tier 1: Organization
      • Tier 2: Folders
        • Tier 3: Projects
          • Tier 4: Resources
            • Tier 6: Tags

Tips for implementing Cloud Governance Models:

  1. Research and attend web sessions on these cloud governance models to ensure you understand the nuance
  2. Implement your cloud provider’s latest hierarchies and governance models prior to mainstream cloud adoption in your organization
  3. Make sure you run the hierarchies you plan to implement by CloudOps, ITOps, DevOps and FinOps to ensure proper organizational mapping and reporting

The cloud providers have done a pretty good job of documenting their roles, policies and hierarchies and creating a graphical representation of their current hierarchical structures cloud governance models. Of course, none of them use the same terminology – I mean, why would you, too easy, right? (And why does Google rank a ‘Folder’ above a ‘Project’? )

With these options available to you, your cloud operations team can make sure to use this to your advantage when planning new resources, accounts, and use cases within your organization. Let us know your thoughts and if you use any of these models to improve your cloud usage.

Why Google’s Aiming Multi-Cloud with BigQuery Omni

Why Google’s Aiming Multi-Cloud with BigQuery Omni

During its virtual Google Cloud Next ’20 “On Air” series, Google announced the introduction of BigQuery Omni. This is an extension of its existing BigQuery data analytics solution to now analyze data in multiple public clouds, currently including Google Cloud and Amazon Web Services (AWS), with Microsoft Azure coming soon. Powered by Google Cloud’s Anthos, and using a unified interface, BigQuery Omni allows developers to analyze data locally without having to move data sets between the platforms.

BigQuery Engine to Analyze Multi-Cloud Data

Google Cloud’s general manager and VP of engineering, Debanjan Saha, says “BigQuery Omni is an extension of Google Cloud’s continued innovation and commitment to multi-cloud that brings the best analytics and data warehouse technology, no matter where the data is stored.” And that, “BigQuery Omni represents a new way of analyzing data stored in multiple public clouds, which is made possible by BigQuery’s separation of compute and storage.” 

According to Google Cloud, this provides scalable storage that can reside in Google Cloud or other public clouds, and stateless, resilient compute that executes standard SQL queries. 

Google Cloud reports that BigQuery Omni will:

  • Break down silos and gain insights on data with a flexible, multi-cloud analytics solution that doesn’t require moving or copying data from other public clouds into Google Cloud for analysis. 
  • Get consistent data experience across clouds and datasets with a unified analytics experience across datasets, in Google Cloud, AWS, and Azure (coming soon) using standard SQL and BigQuery’s familiar interface. BigQuery Omni supports Avro, CSV, JSON, ORC, and Parquet.
  • Securely run analytics to another public cloud with a fully managed infrastructure, powered by Anthos, so you can query data without worrying about the underlying infrastructure. Users can choose the public cloud region where their data is located, and run the query.

Why is Google Aiming Multi-Cloud?

Many organizations leveraging public cloud are doing so with multiple clouds: 55% of organizations are multi-cloud according to a recent survey from IDG, and 80% according to a recent Gartner survey. (Is this actually necessary? Maybe.)

Google Cloud has been the most open to supporting this multi-cloud reality, and perhaps implicit in releases like Anthos and BigQuery Omni is Google’s recognition that it’s #3 in the market, and many of its customers have a presence in AWS or Azure.

So, BigQuery Omni actually involves physically running BigQuery clusters in the cloud on which the remote data resides. This is something that in the past, could only be done if your data was stored only in Google Cloud. Now with Kubernetes-powered Anthos, as well as the visualization tool gained in Google’s acquisition of Looker, Google is moving toward a middleware strategy. Now, it is offering services to bridge data silos, as a strategy to gain market share from its bigger competitors. Expect to see more similar service offerings coming from Google as they look to break AWS’s lead on public cloud.

AWS vs Azure vs Google Free Tier Comparison

AWS vs Azure vs Google Free Tier Comparison

Whether you’re new to public cloud altogether or already use one provider and are interested in trying another, you may be interested in a comparison of the AWS vs Azure vs Google free tier.  The big three cloud providers – AWS, Azure and Google Cloud – each have a free tier available that’s designed to give users the cloud experience without all the costs. They include free trial versions of numerous services so users can test out different products and learn how they work before they make a huge commitment. While they may only cover a small environment, it’s a good way to learn more about each cloud provider. For all of the cloud providers, the free trials are available to only new users.

AWS Free Tier Offerings

AWS free tier includes more than 60 products. There are two different types of free options that are available depending on the product used: always free and 12 months free. To help customers get started on AWS, the services that fall under the free 12-months are for new trial customers and give customers the ability to use the products for free (up to a specific level of usage) for one year from the date the account was created. Keep in mind that once the free 12 months are up, your services will start to be charged at the normal rate. Be prepared and review this checklist of things to do when you outgrow the AWS free tier. 

Azure Free Tier Offerings

The Azure equivalent of a free tier is referred to as a free account. As a new user in Azure, you’re given a $200 credit that has to be used in the first 30 days after activating your account. When you’ve used up the credit or 30 days have expired, you’ll have to upgrade to a paid account if you wish to continue using certain products. Ensure that you have a plan to reduce Azure costs in place. If you don’t need the paid products, there’s also the always free option. 

Some of the ways people choose to use their free account are to gain insights from their data, test and deploy enterprise apps, create custom mobile experiences and more. 

Google Cloud Free Tier Offerings

The Google Cloud Free Tier is essentially an extended free trial that gives you access to free cloud resources so you can learn about Google Cloud services by trying them on your own. 

The Google Cloud Free Tier has two parts – a 90 day free trial with a $300 credit to use with any Google Cloud services and always free, which provides limited access to many common Google Cloud resources, free of charge. Google Cloud gives you a little more time with your credit than Azure, you get the full 90 days of the free trial to use your credit. Unlike free trials from the other cloud providers, Google does not automatically charge you once the trial ends – this way you’re guaranteed that the free tier is actually 100% free. Keep in mind that your trial ends after 90 days or once you’ve exhausted the $300 credit. Any usage beyond the free monthly usage limits are covered by the $300 free credit – you must upgrade to a paid account to continue using Google Cloud. 

Free Tier Limitations

It’s important to note that the always-free services vary widely between the cloud providers and there are usage limitations. Keep in mind the cloud providers’ motivations: they want you to get attached to the services so you start paying for them. So, be aware of the limits before you spin up any resources, and don’t be surprised by any charges. 

In AWS, when your free tier expires or if your application use exceeds the free tier limits, you pay standard, pay-as-you-go service rates. Azure and Google both offer credits for new users that start a free trial, which are a handy way to set a spending limit. However, costs can get a little tricky if you aren’t paying attention. Once the credits have been used you’ll have to upgrade your account if you wish to continue using the products. Essentially, the credit that was acting as a spending limit is automatically removed so whatever you use beyond the free amounts, you will now have to pay for. In Google Cloud, there is a cap on the number of virtual CPUs you can use at once – and you can’t add GPUs or use Windows Server instances.

For 12 months after you upgrade your account, certain amounts of popular products are free. After 12 months, unless decommissioned, any products you may be using will continue to run, and you’ll be billed at the standard pay-as-you-go rates.

Another limitation is that commercial software and operating system licenses typically aren’t available under the free tiers.

These offerings are “use it or lose it” – if you don’t use all your credits or utilize all your usage, there will be no rollover into future months. 

Popular Services, Products, and Tools to Check Out for Free

AWS has 33 products that fall under the one-year free tier – here are some of the most popular: 

  • Amazon EC2 Compute: 750 hours per month of compute time, per month of Linux, RHEL, SLES t2.micro or t3.micro instance and Windows t2.micro or t3.micro instance dependent on region.
  • Amazon S3 Storage: 5GB of standard storage
  • Amazon RDS Database: 750 hours per month of db.t2.micro database usage using MySQL, PostgreSQL, MariaDB, Oracle BYOL, or SQL Server, 20 GB of General Purpose (SSD) database storage and 20 GB of storage for database backups and DB Snapshots. 

For the always-free option, you’ll find a number of products as well, some of these include:

  • AWS Lambda: 1 million free compute requests per month and up to 3.2 million seconds of compute time per month.
  • Amazon DynamoDB: 25 GB of database storage per month, enough to handle up to 200M requests per month.
  • Amazon CloudWatch: 10 custom metrics and alarms per month, 1,000,000 API requests, 5GB of Log Data Ingestion and Log Data Archive and 3 Dashboards with up to 50 metrics.

Azure has 19 products that are free each month for 12 months – here are some of the most popular:

  • Linux and Windows virtual machines: 750 hours (using B1S VM) of compute time 
  • Managed Disk Storage: 64 GB x 2 (P6 SSD) 
  • Blob Storage: 5GB (LRS hot block) 
  • File Storage: 5GB (LRS File Storage) 
  • SQL databases: 250 GB

For their always free offerings, you’ll find even more popular products – here are a few:

  • Azure Kubernetes Service: no charge for cluster management, you only pay for the virtual machines and the associated storage and networking resources consumed.
  • Azure DevOps: 5 users for open source projects and small projects (with unlimited private Git repos). For larger teams, the cost ranges from $6-$90 per month.
  • Azure Cosmos DB (400 RU/s provisioned throughput)

Unlike AWS and Azure, Google Cloud does not have a 12 months free offerings. However, Google Cloud does still have a free tier with a wide range of always free services – some of the most popular ones include:

  • Google BigQuery: 1 TB of queries and 10 GB of storage per month.
  • Kubernetes Engine: One zonal cluster per month
  • Google Compute Engine: 1 f1-micro instance per month only in U.S. regions. 30 GB-months HDD, 5 GB-months snapshot in certain regions and 1 GB of outbound network data from North America to all region destinations per month.
  • Google Cloud Storage: 5 GB of regional storage per month, only in the US. 5,000 Class A, and 50,000 Class B operations, and 1 GB  of outbound network data from North America to all region destinations per month.

 

Check out these blog posts on free credits for each cloud provider to see how you can start saving:

Spot Instances Can Save Money – But Are Cloud Customers Too Scared to Use Them?

Spot Instances Can Save Money – But Are Cloud Customers Too Scared to Use Them?

Spot instances and similar “spare capacity” models are frequently cited as one of the top ways to save money on public cloud. However, we’ve noticed that fewer cloud customers are taking advantage of this discounted capacity than you might expect.

We say “spot instances” in this article for simplicity, but each cloud provider has their own name for the sale of discounted spare capacity – AWS’s spot instances, Azure’s spot VMs and Google Cloud’s preemptible VMs.

Spot instances are a type of purchasing option that allows users to take advantage of spare capacity at a low price, with the possibility that it could be reclaimed for other workloads with just brief notice. 

In the past, AWS’s model required users to bid on Spot capacity. However, the model has since been simplified so users don’t actually have to bid for Spot Instances anymore. Instead, they pay the Spot price that’s in effect for the current hour for the instances that they launch. The prices are now more predictable with much less volatility. Customers still have the option to control costs by providing a maximum price that they’re willing to pay in the console when they request Spot Instances.

Spot Instances in Each Cloud

Variations of spot instances are offered across different cloud providers. AWS has Spot Instances while Google Cloud offers preemptible VMs and as of March of this year, Microsoft Azure announced an even more direct equivalent to Spot Instances, called Azure Spot Virtual Machines. 

Spot VMs have replaced the preview of Azure’s low-priority VMs on scale sets – all eligible low-priority VMs on scale sets have automatically been transitioned to Spot VMs. Azure Spot VMs provide access to unused Azure compute capacity at deep discounts. Spot VMs can be evicted at any time if Azure needs capacity. 

AWS spot instances have variable pricing. Azure Spot VMs offer the same characteristics as a pay-as-you-go virtual machine, the differences being pricing and evictions. Google Preemptible VMs offer a fixed discounting structure. Google’s offering is a bit more flexible, with no limitations on the instance types. Preemptible VMs are designed to be a low-cost, short-duration option for batch jobs and fault-tolerant workloads.

Adoption of Spot Instances 

Our research indicates that less than 20% of cloud users use spot instances on a regular basis, despite spot being on nearly every list of ways to reduce costs (including our own).

While applications can be built to withstand interruption, specific concerns remain, such as loss of log data, exhausting capacity and fluctuation in the spot market price.

In AWS, it’s important to note that while spot prices can reach the on-demand price, since they are driven by long-term supply and demand, they don’t normally reach on-demand price.

A Spot Fleet, in which you specify a certain capacity of instances you want to maintain, is a collection of Spot Instances and can also include On-Demand Instances. AWS attempts to meet the target capacity specified by using a Spot Fleet to launch the number of Spot Instances and On-Demand Instances specified in the Spot Fleet request.

To help reduce the impact of interruptions, you can set up Spot Fleets to respond to interruption notices by hibernating or stopping instances instead of terminating when capacity is no longer available. Spot Fleets will not launch on-demand capacity if Spot capacity is not available on all the capacity pools specified.

AWS also has a capability that allows you to use Amazon EC2 Auto Scaling to scale Spot Instances – this feature also combines different EC2 instance types and pricing models. You are in control of the instance types used to build your group – groups are always looking for the lowest cost while meeting other requirements you’ve set. This option may be a popular choice for some as ASGs are more familiar to customers compared to Fleet, and more suitable for many different workload types. If you switch part or all of your ASGs over to Spot Instances, you may be able to save up to 90% when compared to On-Demand Instances.

Another interesting feature worth noting is Amazon’s capacity-optimized spot instance allocation strategy. When customers diversify their Fleet or Auto Scaling group, the system will launch capacity from the most available capacity pools, effectively decreasing interruptions. In fact, by switching to capacity-optimized allocation users are able to reduce their overall interruption rate by about 75%. 

Is “Eviction” Driving People Away?

There is one main caveat when it comes to spot instances – they are interruptible. All three major cloud providers have mechanisms in place for these spare capacity resources to be interrupted, related to changes in capacity availability and/or changes in pricing.

This means workloads can be “evicted” from a spot instance or VM. Essentially, this means that if a cloud provider needs the resource at any given time, your workloads can be kicked off. You are notified when an  AWS  spot instance is going to be evicted:  AWS emits an event two minutes prior to the actual interruption. In Azure, you can opt to receive notifications that tell you when your VM is going to be evicted. However, you will have only 30 seconds to finish any jobs and perform shutdown tasks prior to the eviction making it almost impossible to manage. Google Cloud also gives you 30 seconds to shut down your instances when you’re preempted so you can save your work for later. Google also always terminates preemptible instances after 24 hours of running. All of this means your application must be designed to be interruptible, and should expect it to happen regularly – difficult for some applications, but not so much for others that are rather stateless, or normally process work in small chunks.

Companies such as Spot – recently acquired by NetApp (congrats!) – help in this regard by safely moving the workload to another available spot instance automatically.

Our research has indicated that fewer than one-quarter of users agree that their spot eviction rate was too low to be a concern – which means for most, eviction rate is a concern. Of course, it’s certainly possible to build applications to be resilient to eviction. For instance, applications can make use of many instance types in order to tolerate market fluctuations and make appropriate bids for each type. 

AWS also offers an automatic scaling feature that has the ability to increase or decrease the target capacity of your Spot Fleet automatically based on demand. The goal of this is to allow users to scale in conservatively in order to protect your application’s availability.

Early Adopters of Spot and Other Innovations May be One and the Same

People who are hesitant to build for spot more likely use regular VMs, perhaps with Reserved Instances for savings. It’s likely that people open to the idea of spot instances are the same who would be early adopters for other tech, like serverless, and no longer have a need for Spot. 

For the right architecture, spot instances can provide significant savings. It’s a matter of whether you want to bother.