Software for Microsoft Azure management plays an important role in reducing the cost of deploying Virtual Machines (VMs) on Microsoft´s cloud computing platform. By being able to schedule temporary stop times for non-production VMs, organizations can save time and money and avoid committing to a long-term Enterprise Agreement that may be inappropriate within a few months.

Although it is possible for organizations to develop their own scheduling scripts, the development resources required – and the possibility that organizations may have to pay for a reserved public IP address – can make this option counterproductive. Furthermore, there are additional features on software for Microsoft Azure management that cannot be replicated by scheduling scripts.

These additional features include a single view of multiple Azure accounts, VM types and pricing options, so that administrators can manage accounts with greater efficiency. Administrators can also create permission tiers with Microsoft Azure management software to increase accountability and enable future budget and capacity planning.

However, not all Microsoft Azure management software is the same. Some only allow you to deploy new roles to Microsoft Azure, whereas others may not have the versatility to manage accounts located in different regions. In the same way as developing scheduling scripts can be counterproductive, selecting an inappropriate software solution for your needs can also cost more money that it saves.

This is why we invite organizations to take advantage of a thirty-day free trial of ParkMyCloud. ParkMyCloud is a versatile and lightweight Microsoft Azure management solution that reduce the cost of deploying non-production VMs on Microsoft´s cloud computing platform by up to 60%. Not only does our free trial give organizations the opportunity to try the software for Microsoft Azure management in their own environments, but they also keep the money they save.

To find out more about our free trial offer, contact us today.

6 Types of Overprovisioned Resources Wasting Money on Your Cloud Bill

In our ongoing discussion on cloud waste, we recently talked about orphaned resources eating away at your cloud budget, but there’s another type of resource that’s costing you money needlessly and this one is hidden in plain sight – overprovisioned resources. When you looked at your initial budget and made your selection of cloud services, you probably had some idea of what resources you needed and in what sizes. Now that you’re well into your usage, have you taken the time to look at those metrics and analyze whether or not you’ve overprovisioned?

One of the easiest ways to waste money is by paying for more than you need and not realizing it. Here are 6 types of overprovisioned resources that contribute to cloud waste.  

Unattached/Underutilized Volumes

As a rule of thumb, it’s a good idea to delete volumes that are not attached to instances or VMs. Take the example of AWS EBS volumes unattached to EC2 instances – if you’re not using them, then all they’re doing is needlessly accruing charges on your monthly bill. And even if your volume is attached to an instance, it’s billed separately, so you should also make a practice of deleting volumes you no longer need (after you backup the data, of course).

Underutilized database warehouses

Data warehouses like Amazon Redshift, Google Cloud Datastore, and Microsoft Azure SQL Data Warehouse  were designed as a simple and cost-effective way to analyze data using standard SQL and your existing Business Intelligence (BI) tools. But to get the most cost savings benefits, you’ll want to identify any clusters that appear to be underutilized and rightsize them to lower costs on your monthly bill.

Underutilized relational databases

Relational databases such as Amazon RDS, Azure SQL, and Google Cloud SQL offer the ability to directly run and manage a relational database without managing the infrastructure that the database is running on or having to worry about patching of the database software itself.

As a best practice, Amazon recommends that you check the configuration of your RDS for any idle DB instances. You should consider a DB instance idle if it has not had a connection for a prolonged period of time, and proceed by deleting the instance to avoid unnecessary charges. If you need to keep storage for data on the instance, there are other cost-effective alternatives to deleting altogether, like taking snapshots. But remember – manual snapshots are retained, taking up storage and costing you money until you delete them.

Underutilized Instances/VMs

We often preach about idle instances and how they waste money, but sizing your instances incorrectly is just as detrimental to your monthly bill. It’s easy to overspend on large instances or VMs that are you don’t need. With any cloud service, whether it’s AWS, Azure, or GCP, you should always “rightsize” your instances and VMs by picking the instance size that is optimized for the size of your workload – be it compute optimized, memory optimized, GPU optimized, or storage optimized.

Once your instance has been running for some time, you’ll have a better idea of whether not the chosen size is optimal. Review your usage and make cost estimates with AWS Management Console, Amazon CloudWatch, and AWS Trusted Advisor if you’re using AWS. Azure users can review their metrics from Azure Monitor data, and Google users can import GCP metrics data for GCP virtual machines. Use this information to find under-utilized resources that can be resized to better optimize costs

Inefficient Containerization

Application containerization allows multiple applications to be distributed across a single host operating system without requiring their own VM, which can lead to significant cost savings. It’s possible that developers will launch multiple containers and fail to terminate them when they are no longer required, wasting money. Due to the number of containers being launched compared to VMs, it will not take long for container-related cloud waste to match that of VM-related cloud waste.

The problem with controlling cloud spend using cloud management software is that many solutions fail to identify unused containers because the solutions are host-centric rather than role-centric.  

Idle hosted caching tools (Redis)

Hosted caching tools like Amazon ElastiCache offer high performance, scalable, and cost-effective caching. ElastiCache also supports Redis, an open source (BSD licensed), in-memory data structure store, used as a database, cache and message broker. While caching tools are highly useful and can save money, it’s important to identify idle cluster nodes and delete them from your account to avoid accruing charges on your monthly bill. Be cognizant of average CPU utilization and get into the practice of deleting the node if your average utilization is under designated minimum criteria that you set.

How to Combat Overprovisioned Resources (and lower your cloud costs)

Now that you have a good idea of ways you could be overprovisioning your cloud resources and needlessly running up your cloud bill – what can you do about it? The end-all-be-all answer is “be vigilant.” The only way to be sure that your resources are cost-optimal is with constant monitoring of your resources and usage metrics. Luckily, optimization tools can help you identify and automate some of these best practices and do a lot of the work for you, saving time and money.

Read more ›

New in ParkMyCloud: Park Azure Scale Sets

Today, we are happy to announce that you can now park Azure scale sets – allowing you to optimize costs for these groups of Microsoft Azure virtual machines.

Use other public clouds? You can park those scale groups, too. A few weeks ago, we announced GCP Managed Instance Group support, and we have supported AWS auto scaling group for some time.

Back to Azure – let’s take a look at the new functionality.

How You Can Park Azure Scale Sets

In ParkMyCloud, you can now manage and park Azure scale sets, both with and without autoscaling, to turn them off or to a “low” state when not needed to save money. When you set a parking schedule on a scale set, you have the option to set a straightforward “on/off” schedule — when parked, the maximum number of resources is 0 and therefore the group is fully parked. Or if you prefer, set your own preferred number of resources for a “low” rather than “off” state.

While we’re talking to our Microsoft fans — don’t miss the Microsoft Teams bot we made so you can control ParkMyCloud right from your chat window! ChatOps is fun, and this bot can streamline your workday by saving you a trip to the ParkMyCloud console.

ParkMyCloud Users: Enable Scale Sets and Get Parking

Existing users: in order to use Azure scale sets, you must update Azure Service Account permissions, as detailed in the ParkMyCloud User Guide.

Once you’ve done that, you can start parking scale sets. You can filter your dashboard to show only scale groups – on the left menu under “Resources” click “Auto Scaling Groups” to filter to just that type of resource. You can select a group and put a parking schedule on it, just like an individual instance.

As mentioned above, you can customize the amount of resources in the group in the high/low states. For the selected group, click the arrow on the far right to open the resource detail screen. You will be able to set a “desired” value of resources for the group at start and at stop.

Note that if your scale sets have multiple scaling profiles, they won’t be parkable and will be denoted with the “unparkable” icon. The number of “Autoscale Profiles” assigned to an Azure scale set is listed on the resource details screen.

New Users: Get Started

If you don’t use ParkMyCloud yet, it’s easy to get started and start saving 65% or more on your cloud costs. We recently upgraded our 14-day free trial to provide Enterprise tier access, so you’ll get to try out everything from user import/export feature to database parking to SmartParking, with unlimited users, teams, and cloud credentials. Get started now.

Read more ›

New Microsoft Teams Bot to Control Cloud Costs

Today we’d like to announce a new Microsoft Teams bot that allows you to fully interact with ParkMyCloud directly through your chat window, without having to access the web GUI. By combining this chatbot with a direct notifications feed of any ParkMyCloud activities through our webhook integration, you can manage your continuous cost control from the Microsoft Teams channels you live in every day — making it easy to save 65% or more on your instance costs.

Organizations who are utilizing DevOps principles are increasingly utilizing ChatOps to manipulate their environments and provide a self-service platform to access the servers and databases they require for their work. There are a few different chat systems and bot platforms available – we also have a chat bot for Slack – but one that is growing rapidly in popularity is Microsoft Teams.

By setting up the Microsoft Teams bot to interact with your ParkMyCloud account, you can allow users to:

  • Assign schedules
  • Temporarily override schedules on parked instances
  • Toggle instances to turn off or on as needed

Combine this with notifications from ParkMyCloud, and you can have full visibility into your cost control initiatives right from your standard Microsoft Teams chat channels. Notifications allow you to have ParkMyCloud post messages for things like schedule changes or instances that are being turned off automatically.

Now, with the new ParkMyCloud Teams bot, you can reply back to those notifications to:

  • Snooze the schedule
  • Turn a system back on temporarily
  • Assign a new schedule.

The chatbot is open-source, so you can feel free to modify the bot as necessary to fit your environment or use cases. It’s written in NodeJS using the botbuilder library from Microsoft, but even if you’re not a NodeJS expert, we tried to make it easy to edit the commands and responses. We’d love to have you send your ideas and modifications back to us for rapid improvement.

If you haven’t already signed up for ParkMyCloud to help save you 65% on your cloud bills, then start a free trial and get the Microsoft Teams bot hooked up for easy ChatOps control. You’ll find that ParkMyCloud can make continuous cost control easy and help reduce your cloud spend, all while integrating with your favorite DevOps tools.

 

Read more ›

Why Your Spring Cleaning Should Include Unused Cloud Resources

Given that spring is very much in the air – at least it is here in Northern Virginia – our attention has turned to tidying up the yard and getting things in good shape for summer. While things are not so seasonally-focused in the world of cloud, the metaphor of taking time out to clean things up applies to unused cloud resources as well. We have even seen some call this ‘cloud pruning’ (not to be confused with the Japanese gardening method).

Cloud pruning is important for improving both cost and performance of your infrastructure. So what are some of the ways you can go about cleaning up, optimizing, and ensuring that our cloud environments are in great shape?

Delete Old Snapshots

Let’s start with focusing on items that we no longer need. One of the most common types of unused cloud resources is old Snapshots. These are your old EBS volumes on AWS, your storage disks (blobs) on Azure, and persistent disks on GCP. If you have had some form of backup strategy then it’s likely that you will understand the need to manage the number of snapshots you keep for a particular volume, and the need to delete older, unneeded snapshots. Cleaning these up immediately helps save on your storage costs and there are a number of best practices documenting how to streamline this process as well as a number of free and paid-for tools to help support this process.

Delete Old Machine Images

A Machine Image provides the information required to launch an instance, which is a virtual server in the cloud. In AWS these are called AMIs, in Azure they’re called Managed Images, and in GCP Custom Images. When these images are no longer needed, it is possible to deregister them. However, depending on your configuration you are likely to continue to incur costs, as typically the snapshot that was created when the image was first created will continue to incur storage costs. Therefore, if you are finished with an AMI, be sure to ensure that you also delete its accompanying snapshot. Managing your old AMIs does require work, but there are a number of methods to streamline these processes made available both by the cloud providers as well as third-party vendors to manage this type of unused cloud resources.

Optimize Containers

With the widespread adoption of containers in the last few years and much of the focus on their specific benefits, few have paid attention to ensuring these containers are optimized for performance and cost. One of the most effective ways to maximize the benefits of containers is to host multiple containerized application workloads within a single larger instance (typically large or x-large VM) rather than on a number of smaller, separate VMs. In particular, this is something you would could utilize in your dev and test environments rather than in production, where you may just have one machine available to deploy to. As containerization continues to evolve, services such as AWS’s Fargate are enabling much more control of the resources required to run your containers beyond what is available today using traditional VMs. In particular, the ability to specify the exact CPU and memory your code requires (and thus the amount you pay) scales exactly with how many containers you are running.

So alongside pruning your trees or sweeping your deck and taking care of your outside spaces this spring, remember to take a look around your cloud environment and look for opportunities to remove unused cloud resources to optimize not only for cost, but also performance.

Read more ›

5 Ways to Get Discounts on Cloud Resources

Whether you’re just getting started on public cloud, or you’ve gotten a bill that blew your budget out of the water, it’s a good idea to research ways to get discounts on cloud resources. There’s no reason to pay list price when so many cost-savings measures are available (and your peers are probably taking advantage of them!) Here are our top five ways to get discounts on cloud.

1. Buy in Advance

By purchasing your compute power in advance, you can get a discounted rate — the notable examples being AWS Reserved Instances, Azure Reserved Instances, and Google Committed Use Discounts.

So will these save you money? Actually, that’s a great question. There are several factors that weigh into the answer:

  • How much you pay upfront (for example AWS offers all-upfront, partial-upfront, or no-upfront)
  • Contract term: 1-year or 3-year term – the longer term will save more, but there’s risk involved in committing for that long
  • If the cloud provider cuts their prices during your contract term (and they probably will), you’ll save less

This blog post about AWS Reserved Instances digs into these issues further. Bottom line: paying in advance can save you money, but proceed with caution.

2. Use Your Resources More

The primary example of “spending more to save more” in the cloud computing world is Google Sustained Use Discounts. This is a cool option for automatic savings – as long as you use an instance for at least 25% of the month, GCP will charge you less than list price.

But just like the advanced purchasing options above, there are several factors to account for before assuming this will really save you “up to 60%” of the cost. It may actually be better to just turn off your resources when you’re not using them – more in this post about Google Sustained Use Discounts.

3. If You’re Big: Enterprise Agreements and Volume Discounts

Anyone who’s shopped at Costco isn’t surprised that buying in bulk can get you a discount. Last week, Twitter announced that it will be using Google Cloud Platform for cold data storage and flexible compute Hadoop clusters — at an estimated list price of $10,000,000/month. Of course, it’s unthinkable that they would actually pay that much – as such a high-profile customer, Twitter is likely to have massive discounts on GCP’s list prices. We often hear from our Azure customers that they chose Azure due to pre-existing Microsoft Enterprise Agreements that give them substantial discounts.

If you have or foresee a large volume of infrastructure costs, make sure to look into:

4. If You’re Small: Startup Credits

Each of the major cloud providers offers free credit programs to startups to lure them and get locked in on their services – but that’s not a bad thing. We’ve talked to startups focused on anything from education to location services who have gotten their money’s worth out of these credits while they focus on growth.

If you work for a startup, check out:

5. Wait

So far, history tells us that if you wait a few months, your public cloud provider will drop their prices, giving you a built-in discount.

If you stick with the existing resource types, rather than flocking to the newer, shinier models, you should be all set. The same AWS m1.large instance that cost $0.40/hour in 2008 now goes for $0.175. We’ll just say that’s not exactly on pace with inflation.

It’s Okay if You Don’t Get Discounts on Cloud

What if you’re not a startup, you’re not an enterprise, and you just need some regular compute and database infrastructure now? Should you worry if you don’t get discounts on cloud list prices? No sweat. Even by paying list price, it’s still possible to optimize your spend. Make sure you’re combing through your bill every so often to find orphaned or unused resources that need to be deleted.

Additionally, right-size your resources and turn them off when you’re not using them to pay only for what you actually need – you’ll save money, even without a discount.

Read more ›

Cloud Computing Green Initiatives on the Rise

Over the past couple of months, we have seen a lot of articles about the Big Three cloud providers and their efforts to be environmentally friendly and make cloud computing green. What are Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP) doing to make their IaaS services as green as possible? Does moving to the cloud help enterprises with their green initiatives and use of renewable energy?

It seems the cloud providers are focused on using renewable energy like solar and wind to power their massive data centers and are very actively touting that fact.

For example, Microsoft recently announced a new renewable energy initiative, the Sunseap project. This project, Microsoft’s first Asian clean energy deal, will install solar panels on hundreds of rooftops in Singapore, which they claim will generate 60MW to power Microsoft’s Singapore datacenter — making Microsoft Azure, Office 365 and numerous other cloud services. This deal is the third international clean energy announcement, following two wind deals announced in Ireland and The Netherlands in 2017. That’s pretty cool in my book, so kudos to them.

Google made a similar announcement recently, albeit a little more general, where they tout that Google is now buying enough renewable energy to match the power used in its data centers and offices. Google said that last year its total purchase of energy from sources including wind and solar exceeded the amount of electricity used by its operations around the world. According to a recent blog written by Google, they are the first public cloud, and company of their size, to have achieved that feat, so says Urs Hölzle, Google’s senior vice president of technical infrastructure. Now we can’t verify this but let’s take them at face value given the data in the chart below:

One observation we have in looking at this chart – where are IBM and Oracle? Once again, the Big Three always seem to be several steps ahead.

Speaking of, we’ve looked at Microsoft and Google, what about AWS? According to AWS’s self-reports, it seems that they are behind both Google and Microsoft in terms of relying 100% on renewable energy. AWS states a long-term commitment to achieve 100% renewable energy usage for their global infrastructure footprint, and had set a goal to be powered by 50% renewable energy by the end of 2017 (we could not find a recent 2018 update).

Moving to the cloud has many benefits – time to market, agility, innovation, lower upfront cost, and the commitment to renewable energy.! There’s one other way for cloud computing to be more sustainable – and that’s by all of us using fewer resources. In our small little way, ParkMyCloud helps – we help you turn cloud stuff off when its not being used, kind of like following your kids around the house and shutting off the lights, your at-home green initiative – you know you can automate that using Nest, right? Saving money in the process? That’s a win-win.

Read more ›

Interview: ParkMyCloud Empowers Sysco Foods’ Cloud-Only Strategy

We talked with Kurt Brochu, Senior Manager of the Cloud Enablement Team at Sysco Foods, about how his company has been using ParkMyCloud to empower end users to keep costs in check with the implementation of their cloud-only strategy.

Thanks for taking the time to speak with us today. I know we chatted before at re:Invent, where you gave us some great feedback, and we’re excited to hear more about your use of ParkMyCloud since it rolled out to your other teams.

To get started, can your describe your role at Sysco and what you do?

I’m senior manager here in charge of the cloud enablement team. The focus is on public cloud offerings, where we function as the support tier for the teams that consume those services. I also have ownership of ensuring that cost containment and appropriateness of use is being performed, as well as security and connectivity, network services, authentication, and DNS.

We don’t consider ourselves IT, our department is referred to as Business Technology. Our CTO brought us on 3 or 4 years ago with the expectation that we understand the business needs, wants, and desires, to actually service them as they would need versus passively telling them that their server is up or down.

As well as security and the dev team, teams using cloud also include areas that are customer facing, like sales, or internal, like finance, business reporting, asset management, and the list goes on.

Tell us about your company’s cloud usage.

We’ve had our own private cloud since 2003, offered on-prem. We’ve been in public cloud since 2013. Now, our position has gone from a “cloud-first” to a “cloud-only” strategy in the sense that any new workload that comes along is primarily put in public cloud. We primarily use AWS and are adding workloads to Azure as well.

Talk to me about how cost control fits into your cloud-only strategy. How did you realize there was a problem?

We were seeing around 20% month over month growth in expenditure between our two public clouds. Our budget wasn’t prepared for that type of growth.

We realized that some of the teams that had ability to auto-generate workloads weren’t best managing their resources. There wasn’t an easy way to show the expenses in a visual manner to present them to Sysco, or to give them some means to manage the state of their workloads.

The teams were good at building other pipelines for bringing workloads online but they didn’t have day-to-day capabilities.

How did you discover ParkMyCloud as a solution to your cost control problem?

We first stumbled upon ParkMyCloud at the 2016 AWS re:Invent conference and were immediately intrigued but didn’t have the cycles to look into it until this past summer, when when we made the switch from cloud-first to a cloud-only strategy.

We’ve been running ParkMyCloud since the week before re:Invent in 2017. From there, we had our first presentation to our leadership team in December 2017, where we showed that the uptick in savings was dramatic. It’s leveled off right now because we have a lot of new workloads coming in, but the savings are still noticeable. We still have developers who think that their dev system has to be always be on and at will, but they don’t understand that now that we have ParkMyCloud, making it “at will” is as simple as an API call or the click of a button. I expect to see our savings to grow over the rest of the calendar year.

We have 50+ teams and over 500 users on ParkMyCloud now.

That’s great to hear! So how much are you saving on your cloud costs with ParkMyCloud?

Our lifetime savings thus far is $28,000, and the tool has paid for itself pretty quickly.

We have one team who has over 40% savings on their workloads. They were spending on average about $10,000 a month, and now it’s at $5,800 because they leverage ParkMyCloud’s simplified scheduling start/stop capabilities.

What other benefits are you getting from your use of the platform?

What I really like is that we have given most of our senior directors, who actually own the budgets, access to the tool as well. It lets the senior directors, as well as the executives when I present to them, see the actual cost savings. It gives you the ability to shine light in places that people don’t like to have the light shine.

The development team at ParkMyCloud has also been very open to receiving suggestions and capabilities that will help us improve savings and increase user adoption.

That’s great, and please continue to submit your feedback and requests to us! And in that regard, have you tried our SmartParking feature to get recommended schedules based on your usage?

Yes, we have started to. When I’m asked by a team to show them how we suggest they use the tool, they get to decide whether or not to enforce it. I’ll say that they are exceedingly happy by the fact that they can go and see their usage. One developer is telling their team that the feature has to be on at all times.

Are there any other cost savings measures that you use in conjunction with ParkMyCloud or in addition?

We pull numbers and look at Amazon’s best prices guide for sizing. We also take the recommendations from ParkMyCloud and we cross compare those.

Do you have any other feedback for us?

The magic of ParkMyCloud is that it empowers the end user to make decisions for the betterment of business, and gives us the needed visibility to do our jobs effectively. That’s the bottom line. Each user has a decision: I can spend money on wasted resources or I can save it where I can and apply the savings to other projects. Once you start to understand that, then you have that “AHA” moment.

Before using ParkMyCloud, most developers have no awareness of the expense of their workloads. This tool allows me to unfilter that data so they can see, for example: this workload is $293 a month, every month. If you look at your entire environment, you’re spending $17,000 a month, but if you take it down just for the weekend, you could be saving $2-3,000 a month or more depending on how aggressive you want to be, without hurting your ability to support the business. It’s that “AHA” moment that is satisfying to watch.

That’s what we noticed immediately when we looked at the summary reports  – the uptick that appears right after you have these presentations with the team makes your heart feel good.

Well thank you Kurt, again we really appreciate you taking the time to speak with us.

Thank you.

Read more ›

Azure Region Pricing: Costs for Compute

In this blog we are going to examine how Microsoft Azure region pricing varies and how region selection can help you reduce cloud spending.

How Organizations Select Public Cloud Regions

There are many comparisons that go into pricing differences between AWS vs Azure vs GCP, etc. At the end of the day, however, most organizations select one primary cloud service provider (CSP) for most of their workloads, plus maybe another for multi-cloud redundancy of critical services. Once selected, organizations then typically put many of their workloads in the region closest to their offices, plus maybe some geographic redundancy in their production systems. In other situations, a certain region is selected because that is the first region to support some new CSP feature. As time goes by, other regions become options because either those new features are propagated through the system, or whole new regions are created.

CSP regions tend to cluster around certain larger geographic regions, that I will call “areas” for the purpose of this blog. Looking at Azure in particular, we can see that Azure has three major US areas (Western, Central, and Eastern). The Western and Eastern US areas each have two Azure regions, and the Central area has four Azure regions. The UK, Europe and Australia areas each have two Azure regions. There are a number of other Azure regions as well, but they are far enough dispersed that I would consider them to be areas with a single region.

How Does Azure Region Pricing Vary?

With this regional distribution as a starting point, let’s look next at costs for instances. Here is a somewhat random selection of Azure region pricing data, looking at a variety of instance types (cost data as of approximately March 1, 2018).

While this graphic is a bit busy, there are a couple things that jump out at us:

  • Within most of the areas, there are clearly more expensive regions and less expensive regions.
  • The least expensive regions, on average across these instance types are us-west-2, us-west-central, and korea-south.
  • The most expensive regions are asia-pacific-east, japan-east, and australia-east.
  • Windows instances are about 1.5-3 times more expensive than their Linux-based counterparts

Let’s zoom-in on Azure Standard_DS2_v2 instance type, which comprises almost 60% of the total population of Azure instances customers are managing in the ParkMyCloud platform.

We can clearly see the relative volatility in the cost of this instance type across regions. And, while the Windows instance is about 1.5-2 times the cost of the Linux instance, the volatility is fairly closely mirrored across the regions.

Of more interest, however, is how the costs can differ within a given area. From that comparison we can see that there is some real savings to be gained by careful region selection within an area:

Over the course of a year, strategic region selection of a Windows DS2 instance could save up to $578 for the asia-pacific regions, $298 for the us-east regions, and $228 for the Korean regions.  

How to Save Using Regions

By comparing regions within your desired “area” as illustrated above, the savings over a quantity of instances can be significant. Good region selection is fundamental to controlling Azure costs, and for costs across the other clouds as well.

Read more ›

Announcing SmartParking for Microsoft Azure: Automated On/Off Schedules Based on Azure Monitor Data

Today, we’re excited to announce the release of SmartParkingTM for Microsoft Azure! SmartParking allows Azure customers to automate cloud cost optimization by creating parking schedules optimized to your actual cloud usage based on Azure Monitor data.

Here’s how it works: ParkMyCloud analyzes your Azure Monitor data to find patterns in the usage for each of your virtual machines (VMs). Based on those patterns, ParkMyCloud creates recommended on/off schedules for each VM to turn them off when they are idle. This maximizes your savings by ensuring that no VM is running when it’s not needed — while also saving you the time and frustration of trying to figure out when your colleagues need their resources running.

We released SmartParking for AWS in January, and customers have had positive feedback — and SmartParking for Google Cloud Platform is coming soon.

Customize Your Recommendations like your 401K

Is it better to park aggressively, maximizing savings, or to park conservatively, ensuring that no VM is parked when a user might need it? Everyone will have a different preference, which is why we’ve created different options for SmartParking recommendations. Like an investment portfolio, you can choose to receive SmartParking schedules that are “conservative”, “balanced”, or “aggressive”. And like an investment, a bigger risk comes with the opportunity for a bigger reward.

An aggressive SmartParking schedule prioritizes the maximum savings amount. You will park instances – and therefore save money – for the most time, with the “risk” of occasional inconvenience by having something turned off when someone needs it. Not to worry, though — users can always “snooze” these schedules to override them if they need to use the instance when it’s parked.

On the other hand, a conservative SmartParking schedule will make it more likely that your instances are never parked when they might be needed. It will only recommend parked times when the instance is never used. Choose “balanced” for a happy medium.

Customer Feedback: Making Parking Better Than Ever

ParkMyCloud customer Sysco Foods has more than 500 users across 50 teams using ParkMyCloud to manage their AWS environments. “When I’m asked by a team how they should use the tool, they’re exceedingly happy that they can go in and see when systems are idle,” Kurt Brochu, Sysco Foods’ Senior Manager of the Cloud Enablement Team, said of SmartParking. “To me, the magic is that the platform empowers the end user to make decisions for the betterment of the business.”

Already a ParkMyCloud user? Log in to your account to try out SmartParking for Azure. Note that you’ll have to update the permissions that ParkMyCloud has to access your Azure data — see the user guide for instructions on that.

Not yet a ParkMyCloud user? Start a free trial here.

Google Cloud Platform user? Not to worry — Google Cloud SmartParking is coming next month. Let us know if you’re interested and we’ll notify you when it’s released.

Read more ›

Don’t Let Your Server Patching Schedule Get in the Way of Cost Control

Don’t let your server patching schedule get in the way of saving money. The idea of minimizing cloud waste was a very new concept two years ago, but as cloud use has grown, so has the need for minimizing wasted spend. CFOs now demand that the cloud operations teams turn off idle systems in the face of rising cloud bills, but the users of these systems are the ones that have to deal with servers being off when they need them.

Users of ParkMyCloud are able to overcome some of the common objections to scheduling non-production resources. The most common objection is, “What if I need the server or database when it’s scheduled to be off?” That’s why ParkMyCloud offers the ability to “snooze” the schedule, which is a temporary override that lets you choose how long you need the system for. This snooze can be done easily from our UI, or through alternative methods like our API, mobile app, or Slackbot.

A related objection is related to how your parking schedule can work with your server patching schedule. The most common way of dealing with patching in ParkMyCloud is to use our API. The workflow would be to log in through the API, get a list of the resources, then choose which resources you want and choose to “snooze” the schedule for a couple of hours, or however long the patching takes. Once the schedule is snoozed, you can toggle the instance on, then do the patching. After the patching is complete, you can either cancel the snooze to go back to the original schedule or wait for the snooze to finish and timeout. If you have an automated patching tool that can make REST calls, this can be an easy way to patch on demand with minimal work.

If you’re on a weekly server patching schedule, you could also just implement the patch times into your pre-set schedules so that the instances turn on, say, at 2:00 a.m. on Wednesdays. By plugging this into your normal schedules, you can still save money during most off-hours, but have the instances on when the patch window is open. This can be a great way to do weekly backups as well, with minimal disruption.

This use of ParkMyCloud while plugging in to external tools and processes is the best way to get every developer and CloudOps engineer on board with continuous cost control. By reducing these objections, you can reduce your cloud costs and be the hero of your organization. Start up a free trial today to see these plug-ins in action!

Read more ›

Microsoft’s Start/Stop VM Solution vs. ParkMyCloud

Microsoft recently released a preview of their Start/Stop VM solution in the Azure Marketplace. Users of Azure took notice and started looking into it, only to find that it was lacking some key functionality that they required for their business. Let’s take a look at what this Start/Stop tool offers and what it lacks, then compare it to ParkMyCloud’s comprehensive offering.

Azure Start/Stop VM Solution

The crux of this solution is the use of a few Azure services, specifically Automation and Log Analytics to schedule the VMs and SendGrid to let you know when a system was shut down or started via email. This use of native tools within Azure can be useful if you’re already baked into the Azure ecosystem, but can be prohibitive to exploring other cloud options.

This solution does cost money, but it’s not very easy to estimate the cost (but does that surprise you?). The total cost is based on the underlying services (Automation, Log Analytics, and SendGrid), which means it could be very cheap or very expensive depending on what else you use and how often you’re scheduling resources. The schedules can be based on time, but only for a single start and stop time. The page claims it can be based on utilization, but in the initial setup there is no place to configure that. It also needs to be set up for 4 hours before it can show you any log or monitoring information.

The interface for setting up schedules and automation is not very user-friendly. It requires creating automation scripts that are either for stopping or starting only, and only have one time attached. To create new schedules, you have to create new scripts, which makes the interface confusing for those who aren’t used to the Azure portal. At the end of the setup, you’ll have at least a dozen new objects in your Azure subscription, which only grows if you have any significant number of VMs.

How it stacks up to ParkMyCloud

So if the Start/Stop VM Solution from Microsoft can start and stop VMs, what more do you need? Well, we at ParkMyCloud have heard from customers (ranging from day-1 startups to Fortune 100 companies) that there are features necessary for a cloud cost optimization tool if it is going to get widespread adoption. Here are some of the features ParkMyCloud has that are missing from the Microsoft tool:

  • Single Pane of Glass – ParkMyCloud can work with multiple clouds, multiple accounts within each cloud, and multiple regions within each account, all in one easy-to-use interface.
  • Easy to change or override schedules – Users can change schedules or temporarily “snooze” them through the UI, our API, our Slackbot, or through our iOS app.
  • User Management – Admins can delegate access to users and assign Team Leads to manage sub-groups within the organization, providing user governance over schedules and VMs.
  • No Azure-specific knowledge needed – Users don’t need to know details about setting up Automation Scripts or Log Analytics to get their servers up and running. Many ParkMyCloud administrators provide access to users throughout their organizations via the ParkMyCloud RBAC. This is useful for users who may need to, say, start and stop a demo environment on demand, but who do not have the knowledge necessary to do this through the Azure console.
  • Enterprise features – Single sign-on, savings reports, notifications straight to your email or chat group, and full support access helps your large organization save money quickly.

As you can tell, the Start/Stop VM solution from Microsoft can be useful for very specific cases, but most customers will find it lacking the features they really need to make cloud cost savings a priority. ParkMyCloud offers these features at a low cost, so try out the free trial now to see how quickly you can cut your Azure cloud bill.

Read more ›

7 Ways Cloud Services Pricing is Confusing

Beware the sticker shock – cloud services pricing is nothing close to simple, especially as you come to terms with the dollar amount on your monthly cloud bill. While cloud service providers like AWS, Azure, and Google were meant to provide compute resources to save enterprises money on their infrastructure, cloud services pricing is complicated, messy, and difficult to understand. Here are 7 ways that cloud providers obscure pricing on your monthly bill:  

1 – They use varying terminology

For the purpose of this post, we’ll focus on the three biggest cloud service providers: AWS, Azure, and Google. Between these three cloud providers alone, different analogies are used for just about every component of services offered.

For example, when you think of a virtual machine (VM), that’s what AWS calls an “instance,” Azure calls a “virtual machine,” and Google calls a “virtual machine instance.” If you have a group of these different machines, or instances, in Amazon and Google they’re called “auto-scaling” groups, whereas in Azure they’re called “scale sets.” There’s also different terminology for their pricing models. AWS offers on-demand instances, Azure calls it “pay as you go,” and Google refers to it as “sustained use.” You’ve also got “reserved instances” in AWS, “reserved VM instances” in Azure, and “committed use” in Google. And you have spot instances in AWS, which are the same as low-priority VMs in Azure, and preemptible instances in Google.

2 – There’s a multitude of variables

Operating systems, compute, network, memory, and disk space are all different factors that go into the pricing and sizing of these instances. Each of these virtual machine instances also have different categories: general purpose, compute optimized, memory optimized, disk optimized and other various types. Then, within each of these different instance types, there are different families. In AWS, the cheapest and smallest instances are in the “t2” family, in Azure they’re called the “A” family. On top of that, there are different generations within each of those families, so in AWS there’s t2, t3, m2, m3, m4, and within each of those processor families, different sizes (small, medium, large, and extra large). So there’s lots of different options available. Oh, and lots confusion, too.  

3 – It’s hard to see what you’re spending

If you aren’t familiar with AWS, Azure, or Google Cloud’s consoles or dashboards, it can be hard to find what you’re looking for. To find specific features, you really need to dig in, but event just trying to figure out the basics of how much you’re currently spending, and predicting how much you will be spending – all can be very hard to understand. You can go with the option of building your own dashboard by pulling in from their APIs, but that takes a lot of upfront effort, or you can purchase an external tool to manage overall cost and spending.

4 – It’s based on what you provision…not what you use

Cloud services pricing can charge on a per-hour, per-minute, or per-second basis. If you’re used to the on-prem model where you just deploy things and leave them running 24/7, then you may not be used to this kind of pricing model. But when you move to the cloud’s on-demand pricing models, everything is based on the amount of time you use it.

When you’re charged per hour, it might seem like 6 cents per hour is not that much, but after running instances for 730 hours in a month, it turns out to be a lot of money. This leads to another sub-point: the bill you get at the end of the month doesn’t come until 5 days after the month ends, and it’s not until that point that you get to see what you’ve used. As you’re using instances (or VMs) during the time you need them, you don’t really think about turning them off or even losing servers. We’ve had customers who have servers in different regions, or on different accounts that don’t get checked regularly, and they didn’t even realize they’ve been running all this time, charging up bill after bill.

You might also be overprovisioning or oversizing resources — for example, provisioning multiple extra large instances thinking you might need them someday or use them down the line. If you’re used to that, and overprovisioning everything by twice as much as you need, it can really come back to bite you when you go look at the bill and you’ve been running resources without utilizing them, but are still getting charged for them – constantly.

5 – They change the pricing frequently

Cloud services pricing has changed quite often. So far, they have been trending downward, so things have been getting cheaper over time due to factors like competition and increased utilization of data centers in their space. However, don’t jump to conclude that price changes will never go up.

Frequent price changes make it hard to map out usage and costs over time. Amazon has already made changes to their price more than 60 times since they’ve been around, making it hard for users to plan a long-term approach. Also for some of these instances, if you have them deployed for a long time, the prices of instances don’t display in a way that is easy to track, so you may not even realize that there’s been a price change if you’ve been running the same instances on a consistent basis.

6 – They offer cost savings options… but they’re difficult to understand (or implement)

In AWS, there are some cost savings measures available for shutting things down on a schedule, but in order to run them you need to be familiar with Amazon’s internal tools like Lambda and RDS. If you’re not already familiar, it may be difficult to actually implement this just for the sake of getting things to turn off on a schedule.  

One of the other things you can use in AWS is Reserved Instances, or with Azure you can pay upfront for a full year or two years. The problem: you need to plan ahead for the next 12 to 24 months and know exactly what you’re going to use over that time, which sort of goes against the nature of cloud as a dynamic environment where you can just use what you need. Not to mention, going back to point #2, the obscure terminology for spot instances, reserved instances, and what the different sizes are.

7 – Each service is billed in a different way

Cloud services pricing shifts between IaaS (infrastructure as a service), which uses VMs that are billed one way, and PaaS (platform as a service) gets billed another way. Different mechanisms for billing can be very confusing as you start expanding into different services that cloud providers offer.

As an example, the Lambda functions in AWS are charged based on the number of requests for your functions, the duration, and the time it takes for your code to execute. The Lambda free tier includes 1M free requests per month and 400,000 GB-seconds of compute time per month, or you can get 1M request free and $0.20 per 1M requests thereafter, OR use “duration” tier and get 400,000 GB-seconds per month free, $0.00001667 for every GB-second used thereafter – simple, right? Not so much.

Another example comes from the databases you can run in Azure. Databases can run as a single server or can be priced by elastic pools, each with different tables based on the type of database, then priced by storage, number of databases, etc.

With Google Kubernetes clusters, you’re getting charged per node in the cluster, and each node is charged based on size. Nodes are auto-scaled, so price will go up and down based on the amount that you need. Once again, there’s no easy way of knowing how much you use or how much you need, making it hard to plan ahead.

What can you do about it?

Ultimately, cloud service offerings are there to help enterprises save money on their infrastructures, and they’re great options IF you know how to use them. To optimize your cloud environment and save money on costs, we have a few suggestions:

    • Get a single view of your billing. You can write your own scripts (but that’s not the best answer) or use an external tool.  
    • Understand how each of the services you use is billed. Download the bill, look through it, and work with your team to understand how you’re being billed.
    • Make sure you’re not running anything you shouldn’t be. Shut things down when you don’t need them, like dev and test instance on nights and weekends.Try to plan out as much as you can in advance.
    • Review regularly to plan out usage and schedules as much as you can in advance
    • Put governance measures in place so that users can only access certain features, regions, and limits within the environment. 

Cloud services pricing is tricky, complicated, and hard to understand. Don’t let this confusion affect your monthly cloud bill. Try ParkMyCloud for an automated solution to cost control.

Read more ›

ParkMyCloud’s Top 5 Blog Posts of 2017

Before we ring in the new year, ParkMyCloud is taking a look back at 2017. We get a lot of great feedback on our blogs so we decided to summarize our top 5 blog posts, as indicated by our readers (views and shares). In case you missed them, please take a moment and enjoy our most popular posts of 2017!  

Azure vs AWS 2017: Is Azure really surpassing AWS?

Azure vs AWS – what’s the deal? After both cloud providers reported their quarterly earnings at the same time, speculation grew as to whether Azure might have a shot at outpacing Amazon. Provocative headlines teased the idea that Azure is catching up with AWS, making it a great opportunity to compare two out of the ‘big three’ providers. While it may seem like AWS is the one to beat, this blog examines whether Azure is catching up, where they are gaining ground, and why the debate even matters.

AWS vs Google Cloud Pricing – A Comprehensive Look

When it comes to comparing cloud providers, a look at pricing is not only helpful, it’s imperative. AWS and Google Cloud Platform (GCP) use different terminology for their instances, different categories of compute sizing, and take marketing liberties in describing their offerings. To make matters even more confusing, each provider takes a different approach to pricing, charging you by the hour in some cases or by the minute in others, and both having minimums. This blog breaks down all of the jargon and gives you valuable insight into how AWS and GCP are charging you on their monthly cloud bill.

The Cloud Waste Problem That’s Killing Your Business (And What To Do About It)

As enterprises continue shifting to the cloud, service providers like AWS, GCP, Azure, and more offer cloud services as a valuable utility for cost savings. However, as a utility, the cloud has serious potential for waste if not used optimally. What is “cloud waste” and where does it come from? What are the consequences? What can you do to reduce it? This blog answers those burning questions and tells you how to prevent waste and optimize your cloud spend.

Start and Stop RDS Instances – and Schedule with ParkMyCloud

When Amazon announced the release of start and stop RDS instances, AWS users finally had the ability to ‘turn off’ their RDS instances and save money on their cloud bill – nice! However, they would still be charged for provisioned storage, manual snapshots, and automated backup storage. What if there was a solution to starting and stopping RDS instances on an automated schedule, ensuring that they’re not left running when not needed? This blog explains how ParkMyCloud offers automated cost control on a schedule, saving you even more on your monthly cloud bill.

Why We Love the AWS IoT Button

We talk a lot about how ParkMyCloud can save you money on your cloud bill, because we can, but we also love to share the exciting, fun, and innovative offerings that the could brings. The AWS IoT button is a device like no other. You can program it to integrate with any internet-connected device, opening up a whole world of possibilities for what you can do with it. Make a remote control for Netflix, brew coffee in the morning without getting out of bed, or place a takeout order for lunch, all with the push of a button. This blog tells you about how the button was created, how to use it, and some ways that creative developers are using the AWS IoT button.

To another great year…

As we wrap up 2017, the ParkMyCloud team is especially thankful to those of you who have made our blog and our Cloud Cost Control platform successful. We look forward to another great year of keeping up with the cloud, sharing our posts, and of course, saving you money on your cloud bill.

Cheers to 2018! Happy New Year from the ParkMyCloud team and keep an eye open for SmartParking and several great announcements in early January.    

Read more ›

3 Enterprise Cloud Management Challenges You Should Be Thinking About

Enterprise cloud management is a top priority. As the shift towards multi-cloud environments continues, so has the need to consider the potential challenges. Whether you already use the public cloud, or are considering making the switch, you probably want to know what the risks are. Here are three you should be thinking about.

1. Multi-Cloud Environments

As the ParkMyCloud platform supports AWS, Azure, and Google, we’ve noticed that multi-cloud strategies are becoming increasingly common among enterprises. There are a number of reasons why it would be beneficial to utilize more than one cloud provider. We have discussed risk mitigation as a common reason, along with price protection and workload optimization. As multi-cloud strategies become more popular, the advantages are clear. However, every strategy comes with its challenges, and it’s important for CIOs to be aware of the associated risks.

Without the use of cloud management tools, multi-cloud management is complex and sometimes difficult to navigate. Different cloud providers have different price models, product features, APIs, and terminology. Compliance requirements are also a factor that must be considered when dealing with multiple providers. Meeting and maintaining requirements for one cloud provider is complicated enough, let alone multiple. And don’t forget you need a single pane to view your multi-cloud infrastructure.

2. Cost Control

Cost control is a first priority among cloud computing trends. Enterprise Management Associates (EMA) conducted a research study and identified key reasons why there is a need for cloud cost control, among them were inefficient use of cloud resources, unpredictable billing, and contractual obligation or technological dependency.

Managing your cloud environment and controlling costs requires a great deal of time and strategy, taking away from the initiatives your enterprise really needs to be focusing on. The good news is that we offer a solution to cost control that will save 65% or more on your monthly cloud bills – just by simply parking your idle cloud resources. ParkMyCloud was one of the top three vendors recommended by EMA as a Rapid ROI Utility. If you’re interested in seeing why, we offer a 14-day free trial.

3. Security & Governance

In discussing a multi-cloud strategy and its challenges, the bigger picture also includes security and governance. As we have mentioned, a multi-cloud environment is complex, complicated, and requires native or 3rd party tools to maintain vigilance. Aside from legal compliance based on the industry your company is in, the cloud also comes with standard security issues and of course the possibility of cloud breaches. In this vein, as we talk to customers they often worry about too many users being granted console access to create and terminate cloud resources which can lead to waste. A key here is limiting user access based on roles or Role-based Access Controls (RBAC). At ParkMyCloud we recognize that visibility and control is important in today’s complex cloud world. That’s why in designing our platform, we provide the sysadmin the ability to delegate access based on a user’s role and the ability to authenticate leveraging SSO using SAML integration . This approach brings security benefits without losing the appeal of a multi-cloud strategy.

Our Solution

Enterprise cloud management is an inevitable priority as the shift towards a multi-cloud environment continues. Multiple cloud services add complexity to the challenges of IT and cloud management. Cost control is time consuming and needs to be automated and monitored constantly. Security and governance is a must and it’s necessary to ensure that users and resources are optimally governed. As the need for cloud management continues to grow, cloud automation tools like ParkMyCloud provide a means to effectively manage cloud resources, minimize challenges, and save you money.

Read more ›

How to Get the Cheapest Cloud Computing

Are you looking for the cheapest cloud computing available? Depending on your current situation, there are a few ways you might find the least expensive cloud offering that fits your needs.

If you don’t currently use the public cloud, or if you’re willing to have infrastructure in multiple clouds, you’re probably looking for the cheapest cloud provider. If you have existing infrastructure, there are a few approaches you can take to minimize costs and ensure they don’t spiral out of control.

Find the Cloud Provider that Offers the Cheapest Cloud Computing

There are a variety of small cloud providers that attempt to compete by dropping their prices. If you work for a small business and prefer a no-frills experience, perhaps one of these is right for you.

However, there’s a reason that the “big three” cloud providers – Amazon Web Services (AWS), Microsoft Azure, and Google Cloud – dominate the market. They offer a wide range of product lines, and are continually innovating. They have a low frequency of outages, and their scale requires a straightforward onboarding process and plenty of documentation.

Whatever provider you decide on, ensure that you’ll have access to all the services you need – is there a computing product, storage, databases? How good is the customer support?

For more information about the three major providers’ pricing, please see this whitepaper on AWS vs. Google Cloud Pricing and this article comparing AWS vs. Azure pricing.

Locked In? How to Get the Cheapest Cloud Computing from Your Current Provider

Of course, if your organization is already locked into a cloud computing provider, comparing providers won’t do you much good. Here’s a short checklist of things you should do to ensure you’re getting the cheapest cloud computing possible from your current provider:

  • Use Reserved Instances for production – Reserved instances can save money – as long as you use them the right way. More here. (This article is about AWS RIs, but similar principles apply to Azure’s RIs and Google’s Committed Use discounts.)
  • Only pay for what you actually need – there are a few common ways that users inadvertently waste money, such as using larger instances than they need, and running development/testing instances 24/7 rather than only when they’re needed. (Here at ParkMyCloud, we’re all about reducing this waste – try it out.)
  • Ask – it never hurts to contact your provider and ask if there’s anything you could be doing to get a cheaper price. If you use Microsoft Azure, you may want to sign up for an Enterprise License Agreement. Or maybe you qualify for AWS startup credits.

Get Credit for Your Efforts

While finding the cheapest cloud computing is, of course, beneficial to your organization’s common good, there’s no need to let your work in spending reduction go unnoticed. Make sure that you track your organization’s spending and show your team where you are reducing spend.

We’ve recently made this task easier than ever for ParkMyCloud users. Now, you can not only create and customize reports of your cloud spending and savings, but you can also schedule these reports to be emailed out. Users are already putting this to work by having savings reports automatically emailed to their bosses and department heads, to ensure that leadership is aware of the cost savings gained… and so users can get credit for their efforts.

 

 

Read more ›

Managing Microsoft Azure VMs with ParkMyCloud

Microsoft has made it easy for companies to get started using Microsoft Azure VMs for development and beyond. However, as an organization’s usage grows past a few servers, it becomes necessary to manage both costs and users and can become complex quickly. ParkMyCloud simplifies cloud management of Microsoft Azure VMs by giving you options to create teams of users, groups of instances, and schedule resources easily.

Consider the case of a large Australian financial institution that uses Microsoft Azure as its sole cloud provider. In this case, they currently they have 125 VMs, costing them over $100k on their monthly cloud bill with Microsoft. Their compute spend is about 95% of their total Azure bill.

Using one Azure account for the entire organization, they chose to split it into multiple divisions, such as DEV, UAT, Prod, and DR. These divisions are then split further into multiple applications that run within each division. In order for them to use ParkMyCloud to best optimize their cloud costs, they created teams of users (one per division). They gave each team permissions in order to allow shutdown and startup of individual applications/VMs. A few select admin users have the ability to control all VMs, regardless of where the applications are placed.

The organization also required specific startup/shutdown ordering for their servers. How would ParkMyCloud handle this need? This looks like a perfect use case for logical groups in ParkMyCloud.

For detailed instructions on how to manage logical groups with ParkMyCloud, see our user guide.

Putting this into context, let’s say that you have a DB and a web server grouped together. You want the DB to start first and stop last, therefore you would need to set the DB to have a start delay of 0 and a stop delay of 5. For the web server, you would set a start delay of 5 and stop delay of 0.

Of course, you could also manage logical groups of Microsoft Azure VMs with tags, scripts, and Azure automation. However, we know firsthand that the alternative solution involves complexities and requires constant upkeep – and who wants that?

ParkMyCloud offers the advantage of not only to cutting your cloud costs, but also making cloud management simpler, easier, and more effective. To experience all great the benefits of our platform, start a free trial today!  

Read more ›

Cloud Optimization Tools = Cloud Cost Control (Part II)

A couple of weeks ago in Part 1 of this blog topic we discussed the need for cloud optimization tools to help enterprises with the problem of cloud cost control. Amazon Web Services (AWS) even goes as far as suggesting the following simple steps to control their costs (which can also be applied  to Microsoft Azure and Google Cloud Platform, but of course with slightly different terminology):

    1. Right-size your services to meet capacity needs at the lowest cost;
    2. Save money when you reserve;
    3. Use the spot market;
    4. Monitor and track service usage;
    5. Use Cost Explorer to optimize savings; and
    6. Turn off idle instances (we added this one).

A variety of third-party tools and services have popped up in the market over the past few years to help with cloud cost optimization – why? Because upwards of $23B was spent on public cloud infrastructure in 2016, and spending continues to grow at a rate of 40% per year. Furthermore, depending on who you talk to, roughly 25% of public cloud spend is wasted or not optimized — that’s a huge market! If left unchecked, this waste problem is supposed to triple to over $20B by 2020 – enter the vultures (full disclosure, we are also a vulture, but the nice kind). Most of these tools are lumped under the Cloud Management category, which includes subcategories like Cost Visibility and Governance, Cost Optimization, and Cost Control vendors – we are a cost control vendor to be sure.

Why do you, an enterprise, care? Because there are very unique and subtle differences between the tools that fit into these categories, so your use case should dictate where you go for what – and that’s what I am trying to help you with. So, why am I a credible source to write about this (and not just because ParkMyCloud is the best thing since sliced bread)?

Well, yesterday we had a demo with a FinTech company in California that was interested in Cost Control, or thought they were. It turns out that what they were actually interested in was Cost Visibility and Reporting; the folks we talked to were in Engineering Finance, so their concerns were primarily with billing metrics, business unit chargeback for cloud usage, RI management, and dials and widgets to view all stuff AWS and GCP billing related. Instead of trying to force a square peg into a round hole, we passed them on to a company in this space who’s better suited to solve their immediate needs. In response, the Finance folks are going to put us in touch with the FinTech Cloud Ops folks who care about automating their cloud cost control as part of their DevOps processes.

This type of situation happens more often than not. We have a lot of enterprise customers using ParkMyCloud along with CloudHealth, CloudChekr, Cloudability, and Cloudyn because in general, they provide Cost Visibility and Governance, and we provide actionable, automated Cost Control.

As this is our blog, and my view from the street – we have 200+ customers now using ParkMyCloud, and we demo to 5-10 enterprises per week. Based on a couple of generic customer uses cases where we have strong familiarity, here’s what you need to know to stay ahead of the game:

  • Cost Visibility and Governance: CloudHealth, CloudChekr, Cloudability and Cloudyn (now owned by Microsoft)
  • Reserved Instance (RI) management – all of the above
  • Spot Instance management – SpotInst
  • Monitor and Track Usage: CloudHealth, CloudChekr, Cloudability and Cloudyn
  • Turn off (park) Idle Resources – ParkMyCloud, Skeddly, Gorilla Stack, BotMetric
  • Automate Cost Control as part of your DevOps Process: ParkMyCloud
  • Govern User Access to Cloud Console for Start/Stop: ParkMyCloud
  • Integrate with Single Sign-On (SSO) for Federated User Access: ParkMyCloud

To summarize, cloud cost control is important, and there are many cloud optimization tools available to assist with visibility, governance, management, and control of your single or multi-cloud environments. However, there are very few tools which allow you to set up automated actions leveraging your existing enterprise tools like Ping, Okta, Atlassian, Jenkins, and Slack.  Make sure you are not only focusing on cost visibility and recommendations, but also on action-oriented platforms to really get the best bang for your buck.

Read more ›

Cloud Cost Management Tool Comparison

Not only has it become apparent that public cloud is here to stay, it’s also growing faster as time goes on (by 2020, it is estimated that more than 40% of enterprise workloads will be in the cloud). IT infrastructure has changed permanently, and enterprise organizations are coming to terms with some of the side effects of this shift.  One of those side effects is the need for tools and processes (and even teams in larger organizations) dedicated to cloud cost management and cost control.  Executives from all teams within an organization want to see costs, projections, usage, savings, and quantifiable efforts to save the company money while maximizing IT throughput as enterprises shift to resources to the cloud.  

There’s a variety of tools to solve some of these problems, so let’s take a look at a few of the major ones.  All of the tools mentioned below support Amazon AWS, Microsoft Azure, and Google Cloud Platform.

CloudHealth

CloudHealth provides detailed analytics and reporting on your overall cloud spend, with the ability to slice-and-dice that data in a variety of ways.  Recommendations about your instances are made based on a score driven by instance utilization and cloud provider best practices. This data is collected from agents that are installed on the instances, along with cloud-level information.  Analysis and business intelligence tools for cloud spend and infrastructure utilization are featured prominently in the dashboard, with governance provided through policies driven by teams for alerts and thresholds.  Some actions can be scripted, such as deleting elastic IPs/snapshots and managing EC2 instances, but reporting and dashboards are the main focus.

Overall, the platform seems to be a popular choice for large enterprises wanting cost and governance visibility across their cloud infrastructure.  Pricing is based on a percentage of your monthly cloud spend.

CloudCheckr

Cloudcheckr provides visibility into governance, security, compliance, and cost problems based on doing analytics and checks against logic built into their platform. It relies on non-native tools and integrations to take action on the recommendations, such as Spotinst, Ansible, or Chef.  CloudCheckr’s reports cover a wide range of topics, including inventory, utilization, security, costs, and overall best-practices. The UI is simple and is likely equally well regarded by technical and non-technical users.

The platform seems to be a popular choice with small and medium sized enterprises looking for greater overall visibility and recommendations to help optimize their use of cloud.  Given their SMB focus customers are often provided this service through MSPs. Pricing is based on your cloud spend, but a free tier is also available.

Cloudyn

Cloudyn (recently acquired by Microsoft) is focused on providing advice and recommendations along with chargeback and showback capabilities for enterprise organizations. Cloud resources and costs can be managed through their hierarchical team structure.  Visibility, alerting, and recommendations are made in real time to assist in right-sizing instances and identifying outlying resources.  Like CloudCheckr, it relies on external tools or people to act upon recommendations and lacks automation

Their platform options include supporting MSPs in the management of their end customer’s cloud environments as well as an interesting cloud benchmarking service called Cloudyndex.  Pricing for Cloudyn is also based on your monthly cloud spend.  Much of the focus seems to be on current Microsoft Azure customers and users.

ParkMyCloud

Unlike the other tools mentioned, ParkMyCloud focuses on actions and automated scheduling of resources to provide optimization and immediate ROI.  Reports and dashboards are available to show the cost savings provided by these schedules and recommendations on which instances to park.  The schedules can be manually attached to instances, or automatically assigned based on tags or naming schemes through its Policy Engine.  It pairs well with the other previously mentioned recommendation-based tools in this space to provide total cost control through both actions and reporting.

ParkMyCloud is widely used by DevOps and IT Ops in organizations from small startups to global multinationals, all who are keen to automate cost control by leveraging ParkMyCloud’s native API and pre-built integration with tools like Slack, Atlassian, and Jenkins.  Pricing is based on a cost per-instance, with a free tier available.

Conclusion

Cloud cost management isn’t just a “should think about” item, it’s a “must have in place” item, regardless of the size of a company’s cloud bill.  Specialized tools can help you view, manage, and project your cloud costs no matter which provider you choose.  The right toolkit can supercharge your IT infrastructure, so consider a combination of some of the tools above to really get the most out of your AWS, Azure, or Google environment.

Read more ›

Top 3 Ways to Save Money on Azure

Perhaps your CFO or CTO came to you and gave a directive to save money on Azure. Perhaps you received the bill on your own, and realize that this needs to be reduced. Or maybe you’re just migrating to the cloud and want to make sure you’re set up for cost control in advance (if so, props to you for being proactive!)

Whatever the reason you want to reduce your bill, there are a lot of little tips and tricks out there. But to get started, here are the top 3 ways to save money on Azure.

1. Set a spending limit on your Azure account

Our first recommendation to save money on Azure is to set a spending limit on your Azure account. We especially recommend this if you are using your Azure account for non-production. This is because once your limit is reached, your VMs will be stopped and deallocated. You will get an email alert and an alert in the Azure portal, and you do have the ability to turn these back on, but this is of course not ideal for any production systems.

Additionally, keep in mind that there are still services you will be charged for, even if your spending limit has been reached, including Visual studio licenses, Azure Active Directory premium, and support plans.

Here are full instructions on how to use the Azure spending limit on the Azure website.

2. Right size your VMs

One easy way to spend too much on your Azure compute resources is to use VMs that are not properly sized for the workload you are running on them. Use Azure’s Advisor to ensure that you’re not overpaying for processor cores, memory, disk storage, disk I/O, or network bandwidth. More on right-sizing from TechTarget.

While you’re at it, check to see if there’s a less-expensive region you could choose for the VM for additional cost savings.

3. Turn non-production VMs off when they’re not being used

Our third recommendation to save money on Azure is to turn non-production VMs off when they’re not being used – otherwise, you’re paying for time you don’t need. It’s a quick fix, and one that can save 65% of the cost of the VM – if, for example, it was running 24×7 but is only needed 12 hours per day, Monday through Friday.

One basic approach is to ask developers and testers to turn their VMs off when they are done using them — if you do this, ensure that your users are using the Azure portal to put these VMs in the “stopped deallocated” state. If you stop from within a VM, it will be put in a “stopped” state and you will continue to be charged.

However, relying on human memory is not best, so you’ll want to schedule your non-production VMs to shut down on a schedule. You could attempt to script this, but this is counter productive and wastes valuable development resources to write and maintain.

Instead, it’s best to use software like ParkMyCloud’s to automate on/off schedules – including automating schedule and team assignment for access control – and keep your Azure non-production costs in check.

 

 

These three methods should get you started on your goal to reduce costs. Have any other preferred methods to save money on Azure? Leave a comment below to let us know.

Read more ›

Cutting through the AWS and Azure Cloud Pricing Confusion (Caveat Emptor)

Before I try to break down the AWS and Azure cloud pricing jargon, let me give you some context. I am a crusty, old CTO who has been working in advanced technology since the 1980’s. (That’s more than 18 Moore’s Law cycles for processor and chipset fans, and I have lost count of how many technology hype cycles that has been.)

I have grown accustomed to the “deal of a lifetime” on the “technology of the decade” coming around about once every week. So, you can believe me, when I tell you have a very low BS threshold for dishonest sales folks and bogus technology claims. Yes, I am jaded.

My latest venture is a platform, ParkMyCloud, that brings together  multiple public cloud providers. And I can tell you first hand that it is not for the faint-of-heart. It’s like being dropped off in the middle of the jungle in Papua, New Guinea. Each cloud provider has its own culture, its own philosophy, its own language and customers, its own maturity level and, worst of all — its own pricing strategy — which makes it tough for buyers to manage costs. I am convinced that the lowest circles of hell are reserved for people who develop cloud service pricing models. AWS and Azure cloud pricing gurus, beware. And reader, to you: caveat emptor.

AWS and Azure Terminology Differences

Case in point: You have probably read the comparisons of various services across the top cloud providers, as people try to wrap their minds around all the varying jargon used to describe pretty much the same thing. For example, let’s just look at one service: Cloud Computing.

In AWS, servers are called Elastic Compute Cloud (EC2) “Instances”. In Azure they are called “Virtual Machines” or “VMs”. Flocks of these spun up from a snapshot according scaling rules are called “auto scaling groups” in AWS. The same things are called “scale sets” in Azure.

Of course cloud providers had to start somewhere, then they learned from their mistakes and improved. When AWS started with EC2, they had not yet released virtual private clouds (VPCs), so their instances ran outside of VPCs. Now all the latest stuff runs inside of VPCs. The older ones are called, “classic” and have a number of limitations.
The same thing is true of Azure. When they first released, their VMs were not set up to use what is now their Resource Manager or be managed in Resource Groups (the moral equivalent of CloudFormation Stacks in AWS). Now, all of their latest VMs are compatible with Resource Manager. The older ones are called, you guessed it … “classic”.

(What genius came up with the idea to call the older versions of these, the ones you’re probably stranded with and no longer want, “classic”?)

Both AWS and Azure have a dizzying array of instances/VMs to choose from, and doing an apples-to-apples comparison between them can be quite daunting. They have different categories: General purpose, compute optimized, storage optimized, disk optimized, etc.

Then within each one of those, there are types or sizes. For example, in AWS the tiny, cheap ones are currently the “t2” family. In Azure, they are the “A” series. On top of that there are different generations of processors. In AWS, they use an integer after the family type, like t2, m3, m4 and there are sizes, t2.small, m3.medium, m4.large, r16.ginormus (OK, I made that one up).  

In Azure, they use a number after the family letter to connote size, like A0, A1, A2, D1, etc. and “v1”, “v2” after that to tell what generation it is, like D1v1, D2v2.

The bottom line: this is very confusing for folks moving their workloads to public cloud from on-premise data centers (yet another Wonderland of jargon and confusion in its own right). How does one decide which cloud provider to use? How does one even begin to compare prices with all of this mess? Cheer up … it gets worse!

AWS and Azure Cloud Pricing – Examining Differences in Charging

To add to that confusion, they charge you differently for the compute time you use. What do I mean?  AWS prices their compute time by the hour. And by hour, they mean any fraction of an hour: If you start an instance and run it for 61 minutes then shut it down, you get charged for 2 hours of compute time.

Microsoft Azure cloud pricing is listed by the hour for each VM, but they charge you by the minute. So, if you run for 61 minutes, you get charged for 61 minutes. On the surface, this sounds very appealing (and makes me want to wag my finger at AWS and say, “shame on you, AWS”).

However, you really have to pay attention to the use case and the comparable instance prices. Let me give you a concrete example. I mentioned my latest venture, ParkMyCloud, earlier. We park (schedule on/off times) for cloud computing resources in non-production environments (without scripting by the way). So, here is a graph of 6 months worth of data from an m4.large instance somewhere in Asia Pac. The m4 processor family is based on the Xeon Broadwell or Haswell processor and it is one of the most commonly used instance types.

This instance is on a ParkMyCloud parking schedule, where it is RUNNING from 8:00 a.m. to 7:00 p.m. on weekdays and PARKED evenings and weekends. This instance, assuming Linux pricing, costs $0.125 per hour in AWS. From November 6, 2016 until May 9, 2017, this instance ran for 111,690 minutes. This is actually about 1,862 hours, but AWS charged for 1,922 hours and it cost $240.25 in compute time.

example of instance uptime in minutes per dayWhy the difference? ParkMyCloud has a very fast and accurate orchestration engine, but when you start and stop instances, the cloud provider and network response can vary from hour-to-hour and day-to-day, depending on their load, so occasionally things will run that extra minute. And, even though this instance is on a parking schedule, when you look at the graph, you can see that the user took manual control a few times. Stuff happens!

What would the cost have been if AWS charged the same way as Azure?  It would have only cost $232.69. Well, that’s not too bad over the course of six months, unless you have 1,000 of these. Then it becomes material.

However, I wouldn’t rush to judgment on AWS. If you look at the comparable Azure VM, the standard pricing DS2 V2, also running Linux, costs $0.152/hour. So, this same instance running in Azure would have cost $290.39. Yikes!

Therefore, in my particular use case, unless the Azure cloud pricing drops to make their CPU pricing more competitive, their per minute pricing really doesn’t save money.

Conclusion

The ironic thing about all of this, is that once you get past all the confusing jargon and the ridiculous approaches to pricing and charging for usage, the actual cloud services themselves are much easier to use than legacy on-premise services. The public cloud services do provide much better flexibility and faster time-to-value. The cloud providers simply need to get out of their own way. Pricing is but one example where AWS and Azure need to make things a lot simpler, so that newcomers can make informed decisions.

From a pricing standpoint, AWS on-demand pricing is still more competitive than Azure cloud pricing for comparable compute engine’s, despite Azure’s more enlightened approach to charging for CPU/Hr time. That said, AWS really needs to get in-line with both Azure and Google, who charge by the minute. Nobody likes being charged extra for something they don’t use.

In the meantime, ParkMyCloud will continue to help you turn off non-production cloud resources, when you don’t need them and help save you a lot of money on your monthly cloud bills. If we make anything sound more complex than it needs to, call us out. No hiding behind jargon here.

Read more ›
Page 1 of 212
Copyright © ParkMyCloud 2016-2018. All rights reserved|Privacy Policy